Classifying n-Input Boolean Functions
نویسندگان
چکیده
This paper discusses the classification of n-input Boolean functions. The concept of P and NPN equivalence classes is used to classify n-input functions. This way, the set of n-input functions is classified according to three criteria: the number of functions, the number of P classes and the number of NPN classes. The meaning of these criteria is discussed through some affirmations relating them to practical aspects of Boolean function implementation.
منابع مشابه
Characterization of the factorial functions of Eulerian binomial and Sheffer posets
We completely characterize the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n) = n! has...
متن کاملClassification of the factorial functions of Eulerian binomial and Sheffer posets
We give a complete classification of the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n...
متن کاملRenamable Interval Extensions of Partially Defined Boolean Functions
Interval functions constitute quite a special class of Boolean functions for which it is very easy and fast to determine their functional value on a specified input vector. The value of an n-variable interval function specified by interval [a, b] (where a and b are n-bit binary numbers) is true if and only if the input vector viewed as an n-bit number belongs to the interval [a, b]. Renamable i...
متن کاملQuantum algorithms for testing Boolean functions
We discuss quantum algorithms, based on the Bernstein-Vazirani algorithm, for finding which variables a Boolean function depends on. There are 2n possible linear Boolean functions of n variables; given a linear Boolean function, the Bernstein-Vazirani quantum algorithm can deterministically identify which one of these Boolean functions we are given using just one single function query. The same...
متن کاملHighly Nonlinear Vector Boolean Functions
In this paper we study n-input m-output Boolean functions (abbr. (n,m)-functions) with high nonlinearity. First, we present a basic construction method for a balanced (n,m)-function based on a primitive element in GF (2m). With an iterative procedure, we improve some lower bounds of the maximum nonlinearity of balanced (n,m)-functions. The resulting bounds are larger than the maximum nonlineari...
متن کامل